Sunday, 1 October 2017

Código De Php Médio Em Movimento


MetaTrader 4 - Indicadores Médias móveis, indicador MA para MetaTrader 4 O Indicador Técnico da Média de Mudança mostra o valor médio do preço do instrumento por um determinado período de tempo. Quando se calcula a média móvel, uma média do preço do instrumento para este período de tempo. À medida que o preço muda, sua média móvel aumenta ou diminui. Existem quatro tipos diferentes de médias móveis: simples (também conhecido como aritmética), exponencial, suavizado e linear ponderado. As médias móveis podem ser calculadas para qualquer conjunto de dados seqüenciais, incluindo preços de abertura e fechamento, preços mais altos e mais baixos, volume de negócios ou outros indicadores. Muitas vezes, é o caso quando se usam médias móveis duplas. A única coisa em que as médias móveis de diferentes tipos divergem consideravelmente umas das outras, é quando os coeficientes de peso, que são atribuídos aos dados mais recentes, são diferentes. Caso falamos de uma média móvel simples, todos os preços do período de tempo em questão são de valor igual. As médias móveis ponderadas exponenciais e lineares atribuem mais valor aos preços mais recentes. A maneira mais comum de interpretar a média móvel do preço é comparar sua dinâmica com a ação do preço. Quando o preço do instrumento sobe acima de sua média móvel, aparece um sinal de compra, se o preço cai abaixo de sua média móvel, o que nós temos é um sinal de venda. Este sistema de negociação, baseado na média móvel, não foi projetado para fornecer entrada no mercado diretamente no seu ponto mais baixo, e sua saída diretamente no pico. Permite atuar de acordo com a seguinte tendência: comprar logo depois que os preços chegam ao fundo e vender logo depois que os preços atingiram seu pico. Média móvel simples (SMA) Simples, em outras palavras, a média móvel aritmetica é calculada resumindo os preços do encerramento do instrumento durante um certo número de períodos únicos (por exemplo, 12 horas). Esse valor é então dividido pelo número desses períodos. SMA SUM (CLOSE, N) N Onde: N é o número de períodos de cálculo. Média Mínima Exponencial (EMA) A média móvel suavizada exponencialmente é calculada adicionando a média móvel de uma determinada parcela do preço de fechamento atual ao valor anterior. Com médias movidas exponencialmente suavizadas, os preços mais recentes são de maior valor. A média móvel exponencial em percentagem de P será semelhante a: Onde: CLOSE (i) o preço do encerramento do período atual EMA (i-1) A média móvel do encerramento do período anterior P é a porcentagem de usar o valor do preço. Média Mínima Suavizada (SMMA) O primeiro valor dessa média móvel suavizada é calculado como a média móvel simples (SMA): SUM1 SUM (FECHAR, N) As médias móveis e as médias sucessivas são calculadas de acordo com esta fórmula: Onde: SUM1 é o Soma total de preços de fechamento para N períodos SMMA1 é a média móvel suavizada da primeira barra SMMA (i) é a média móvel suavizada da barra atual (exceto para o primeiro) FECHAR (i) é o preço de fechamento atual N é o Período de suavização. Média de Movimento Ponderada Linear (LWMA) No caso da média móvel ponderada, os dados mais recentes são de maior valor do que mais dados iniciais. A média móvel ponderada é calculada multiplicando cada um dos preços de fechamento dentro da série considerada, por um certo coeficiente de peso. LWMA SUM (Fechar (i) i, N) SUM (i, N) Onde: SUM (i, N) é a soma total dos coeficientes de peso. As médias móveis também podem ser aplicadas aos indicadores. É aí que a interpretação das médias móveis dos indicadores é semelhante à interpretação das médias móveis de preços: se o indicador sobe acima de sua média móvel, isso significa que o movimento do indicador ascendente provavelmente continuará: se o indicador cai abaixo da média móvel, isso Significa que é provável que continue indo para baixo. Aqui estão os tipos de médias móveis no gráfico: Média de Movimento Simples (SMA) Média de Movimento Exponencial (EMA) Média de Movimento Suavizada (SMMA) Média de Movimento Ponderada Linear (LWMA) Eu sei que isso é viável com o aumento de acordo com: Mas eu realmente gostaria Gostaria de evitar o uso de impulso. Eu mencionei e não encontrei nenhum exemplo adequado ou legível. Basicamente eu quero acompanhar a média móvel de um fluxo contínuo de um fluxo de números de ponto flutuante usando os 1000 números mais recentes como amostra de dados. Qual é a maneira mais fácil de alcançar isso, experimentei usar uma matriz circular, uma média móvel exponencial e uma média móvel mais simples e descobriu que os resultados da matriz circular adequavam minhas necessidades. 12 de junho 12 às 4:38 Se suas necessidades são simples, você pode tentar usar uma média móvel exponencial. Simplificando, você faz uma variável de acumulador e, à medida que seu código examina cada amostra, o código atualiza o acumulador com o novo valor. Você escolhe um alfa constante que está entre 0 e 1 e calcula isso: você precisa apenas encontrar um valor de alfa onde o efeito de uma determinada amostra dura apenas cerca de 1000 amostras. Hmm, na verdade, não tenho certeza de que isso é adequado para você, agora que eu já coloquei aqui. O problema é que 1000 é uma janela bastante longa para uma média móvel exponencial. Não tenho certeza se houver um alfa que espalhe a média nos últimos 1000 números, sem fluxo inferior no cálculo do ponto flutuante. Mas se você quisesse uma média menor, como 30 números ou mais, esta é uma maneira muito fácil e rápida de fazê-lo. Respondeu 12 de junho 12 às 4:44 1 na sua postagem. A média móvel exponencial pode permitir que o alfa seja variável. Assim, isso permite que ele seja usado para calcular médias base de tempo (por exemplo, bytes por segundo). Se o tempo desde a última atualização do acumulador for superior a 1 segundo, você deixa alfa ser 1.0. Caso contrário, você pode deixar alpha be (usecs desde a última atualização1000000). Ndash jxh 12 de junho 12 às 6:21 Basicamente eu quero acompanhar a média móvel de um fluxo contínuo de um fluxo de números de ponto flutuante usando os 1000 números mais recentes como uma amostra de dados. Observe que as atualizações abaixo atualizam o total como elementos como adicionados, evitando a trajetória O (N) cara para calcular a soma - necessária para a média - na demanda. Total é feito um parâmetro diferente de T para suportar, e. Usando um longo tempo quando totalizando 1000 long s, um int para char s, ou um duplo para float total s. Isso é um pouco falho em que numsamples poderia ultrapassar o INTMAX - se você se importar, você poderia usar um sinal não assinado por muito tempo. Ou use um membro extra de dados do bool para gravar quando o recipiente é preenchido pela primeira vez ao andar de bicicleta numsamples em torno da matriz (melhor então renomeado algo inócuo como pos). Respondeu 12 de junho 12 às 5:19 um assume que quotvoid operator (T sample) quot é realmente quotvoid operatorltlt (T sample) quot. Ndash oPless Jun 8 14 às 11:52 oPless ahhh. Bem manchado. Na verdade, eu quis dizer que ele seria um operador vazio () (amostra T), mas é claro que você poderia usar qualquer notação que você gostasse. Vou consertar, obrigado. Ndash Tony D 8 de junho 14 às 14: 27All médias - minha coleção de médias móveis Oi, Por favor, veja a última versão do conhecido indicador AllAveragesv3.1 com 26 tipos de médias móveis: MAMethod 0: SMA - Média móvel simples MAMethod 1: EMA - Média móvel exponencial MAMethod 2: mais selvagem - Média móvel exponencial média MAMethod 3: LWMA - Média móvel linear ponderada Método 4: SineWMA - Média móvel ponderada seno MAMethod 5: TriMA - Média móvel triangular MAMethod 6: LSMA - Mínima movimentação quadrada Média (ou EPMA, Linear Regression Line) MAMethod 7: SMMA - Suavizado. Eu tenho uma versão deste indicador que conta os ângulos Ma e os cores em 3 cores. Ajuda a incorporar o indicador na EA para trocar diferentes ângulos MA. No entanto, após o indicador MT4 ver 600, todos funcionam nos gráficos e no backtesting. Eu queria recodificar este para que também fosse em 3 cores com, ma-angles, mas o método T3 não está funcionando. Quando eu uso MAMethod 11 indi simplesmente desaparecer.

No comments:

Post a Comment